Growth of Nannochloropsis oculata Cultured using Tofu Liquid Waste Fertilizer

Growth of Nannochloropsis oculata Cultured using Tofu Liquid Waste Fertilizer

Authors

  • Rizky Yanuar Rahmadan Study Programe Aquaculture, Faculty of Fisheries and Marine, Airlangga University, Surabaya, Indonesia
  • Woro Hastuti Satyantini Departement of Fish Health and Aquaculture Faculty of Fisheries and Marine, Airlangga University, Surabaya, Indonesia
  • Luthfiana Aprilianita Sari Departement of Fish Health and Aquaculture Faculty of Fisheries and Marine, Airlangga University, Surabaya, Indonesia

DOI:

https://doi.org/10.55299/ijoss.v2i1.18

Keywords:

Tofu Liquid Waste Fertilizer, Growth, Nannochloropsis oculata

Abstract

Growth of Nannochloropsis oculata is affected by nutrients in its culture media. Tofu liquid waste which is processed into fertilizer is expected to be an alternative nutrient that is more economical for microalgae culture activities. The purpose of this study was to determine the effect of tofu liquid waste fertilizer with different concentrations on the growth of Nannochloropsis oculata. This study used an experimental method with Completely Randomized Design (CRD). The treatment was different concentrations namely P1 (1 ml L-1), P2 (3 ml L-1), P3 (5 ml L-1), P4 (7 ml L-1) and P0 (Walne nutrient 1 ml L-1) each treatment were repeated four times. The main parameters in this study were cell density, cell growth rate and cell doubling time. Data obtained were analyzed using Analysis of Variance (ANOVA) and continued with Duncan's Multiple Range Test (DMRT). Results showed that the treatment of tofu liquid waste fertilizer with different concentrations had a significant different (p<0,05) on the growth of Nannochloropsis oculata. Concentration of 5 ml L-1 (P3) was the best concentration for the growth of Nannochloropsis oculata with peak cell density 1,335±13.54x104 cells ml-1, cell growth rate 0.900±0.001 cells ml-1 day-1 and cell doubling time 18.493±0.026 hours.

Downloads

Download data is not yet available.

References

Alori, E. T., B. R. Glick and O. O. Babalola. 2017. Microbial Phosphorus Solubilization and Its Potential for Use in Sustainable Agriculture. Frontiers in Microbiology, 8 (971) : 1-8. https://doi.org/10.3389/fmicb.2017.00971

Ashour, M. and A. K. El-Wahab. 2017. Enhance Growth and Biochemical Composition of Nannochloropsis oceanica, Cultured under Nutrient Limitation, Using Commercial Agricultural Fertilizer. Journal of Marine Science: Research and Development, 7 (4) : 1-5. DOI:10.4172/2155-9910.1000233

Banerjee, S., W. E. Hew, H. Khatoon, M. Shariff and F. M. Yusoff. 2011. Growth and Proximate Composition of Tropical Marine Chaetoceros calcitrans and Nannochloropsis oculata Cultured Outdoors and Under Laboratory Conditions. African Journal of Biotechnology, 10 (8) : 1375-1383. https://doi.org/10.5897/AJB10.1748

Bisova, K. and V. Zachleder. 2014. Cell-Cycle Regulation in Green Algae Dividing by Multiple Fission. Journal of Experimental Botany, 17 : 1-18. https://doi.org/10.1093/jxb/ert466

Budiono, R., H. Juahir, M. Mamat, Sukono and M. Nurzaman. 2018. Modelling Interaction of CO2 Concentration and the Biomass Algae Due to Reduction of Anthropogenic Carbon Based on Predator-Prey Model. International Journal of Applied Environmental Sciences, 13 (1) : 27-38.

de Mesquita, A. R. C., L. P. da Mota, S. I. J. da Cruz, V. F. de Lima, V. M. S. Filho, A. A. Araujo, T. L. da Silva, K. F. Araujo and L. S. Macedo. 2017. Metabolism and Physiology of Lactobacilli : A Review. Journal of Environmental Analysis and Progres, 2 (2) : 125-136. DOI:10.24221/jeap.2.2.2017.1202.115-124

Dianursanti, B. T. Rizkytata, M. T. Gumelar and T. H. Abdullah. 2014. Industrial Tofu Wastewater as a Cultivation Medium of Microalgae Chlorella vulgaris. Energy Procedia, 47 : 56-61. https://doi.org/10.1016/j.egypro.2014.01.196

Dou, X., X. Lu, M. Lu, L. Yu, R. Xue and J. Ji. 2013. The Effects of Trace Elements on The Lipid Productivity and Fatty Acid Composition of Nannochloropsis oculata. Journal of Renewable Energy, 2 (1) : 1-6. https://doi.org/10.1155/2013/671545

Endar, V., S. J. Hutabarat and B. Prayitno. 2012. Effect of Using Guillard and Walne Technical Culture Media on Growth and Fatty Acid Profiles of Microalgae Skeletonema sp. in Mass Culture. Journal of Coastal Development, 16 (1) : 50- 56.

Flynn, K. J. and J. A. Raven. 2017. What is The Limit for Photoautotropic Plankton Growth Rates ?. Journal of Plankton Research, 39 (1) : 13-22. DOI:10.1093/plankt/fbw067

Gu, N., Q. Lin, G. Li, Y. Tan, L. Huang and J. Lin. 2012. Effect of Salinity on Growth, Biochemical Composition and Lipid Productivity of Nannochloropsis oculata CS 179. Journal of Engineering Life Sciences, 12 (5) : 1-7. https://doi.org/10.1002/elsc.201100204

Hii, Y. S., C. L. Soo, T. S. Chuah, A. M. Azmi and A. B. A. Munafi. 2011. Interactive Effect of Ammonia and Nitrate on The Nitrogen Uptake by Nannochloropsis sp.. Journal of Sustainability Science and Management, 6 (1) : 60-68.

Masodijek, J.,G. Torzillo and M. Koblizek. 2013. Handbook of Microalgal Culture: Applied Phycology and Biotchnology. 2nd Edition. John Wiley and Sons. New York. pp. 21-36. DOI: 10.1002/9781118567166.ch6

Mayhead, E., A. Silkina, C. A. Llewellyn and C. Fuentes-Grunewald. 2018. Comparing Nutrient Removal from Membrane Filtered and Unfiltered Domestic Wastewater Using Chlorella vulgaris. Biology, 7 (12) : 1-21. doi: 10.3390/biology7010012

Paes, C. R. P. S., G. R. Faria, N. A. B. Tinoco, D. J. F. A. Castro, E. Barbarino and S. O. Lourenço. 2016. Growth, Nutrient Uptake and Chemical Composition of Chlorella sp. and Nannochloropsis oculata Under Nitrogen Starvation. Latin American Journal of Aquatic Research, 44 (2) : 275-292. DOI:10.3856/vol44-issue2-fulltext-9

Sanz-Luque, E., A. Chamizo-Ampudia, A. Llamas, A. Galvan and E. Fernandez. 2015. Understanding Nitrate Assimilation and Its Regulation in Microalgae. Frontiers in Plant Science, 6 (2) : 1-17. https://doi.org/10.3389/fpls.2015.00899

Schweitzer, H., K. E. Murray and F. G. Healy. 2014. Evaluation of Media and Nitrogen:Phosphorous Ratios for Optimal Growth of Biotechnologically Important Unicellular Microalgae. American Journal of Biomass and Bioenergy, 3 (3) : 139-150. DOI:10.7726/ajbb.2014.1010

Sun, Y., Y. Huang, Q. Liao, A. Xia, Q. Fu, X. Zhu and J. Fu. 2018. Boosting Nannochloropsis oculata Growth and Lipid Accumulation in a Lab-scale Open Raceway Pond Characterized by Improved Light Distributions Employing Built-in Planar Waveguide Modules. Bioresource Technology, 249 : 880-889. DOI: 10.1016/j.biortech.2017.11.013

Tulashie, S. K. and S. Salifu. 2017. Potential Production of Biodiesel from Green Microalgae. Biofuels : 1-8. DOI:10.1080/17597269.2017.1348188

Widayat, J. Philia and J. Wibisono. 2018. Cultivation of Microalgae Chlorella sp. on Fresh Water and Waste Water of Tofu Industry. International Conference on Energy, Environment and Information System (ICENIS), 31 : 1-3. DOI:10.1051/e3sconf/20183104009

Downloads

Published

2025-01-30

How to Cite

Rahmadan, R. Y., Satyantini, W. H., & Sari, L. A. (2025). Growth of Nannochloropsis oculata Cultured using Tofu Liquid Waste Fertilizer. International Journal of Natural Science Studies and Development (IJOSS), 2(1), 114–123. https://doi.org/10.55299/ijoss.v2i1.18

Issue

Section

Research Article
Loading...